# Aqua Scooter 2.0

Dylan Cannon, Darin Gilliam, Eli Palomares, Elizabeth Tyler, Jiyan Wang, Tyler Winston

April 24, 2015





# Overview

- Client Introduction
- Need Statement and Project Goal
- Objectives
- Constraints
- •QFD
- House of Quality
- Concept Generation
- Decision Matrix

- Concept Analysis
- Fuel Analysis
- Engine Testing
- Emissions Testing
- Cost of Materials
- Conclusion
- References

#### **Client Introduction**

Aqua Scooter is a portable, gasoline 2-stroke powered personal water craft that can propel the user up to 5mph.

Aqua Scooter is a company based in Sedona. The CEO, Robert Witkoff, approached us, asking to design a new Aqua Scooter.



www.cnet.com

The client's current model is unable to be sold in the United States due to EPA regulations.

# Need Statement and Project Goal

#### Need:

Current Aqua Scooter model does not meet EPA regulations

#### **Project Goal:**

 Design a hydrodynamic, inexpensive, aesthetically pleasing Aqua Scooter, with a marine engine that complies with EPA regulations

# Objectives

- Should be lightweight
- Must be buoyant
- Must not exceed 30 g/kWh of Hydrocarbons
- Must not exceed 490 g/kWh of CO
- Must be safe for a child to use

# Constraints

- 1/2 gallon, plastic fuel tank
- Internal combustion powered
- Metal engine and muffler
   housing
- Starter assembly is plastic and metal
- Production cost of less than \$450

- Plastic propeller protection
- Control handle included
- Throttle control
- Exhaust valve
- Must be 18 pounds or less
- Must provide at least 50
   pounds thrust

### **Quality Function Deployment**

| Aqua Scooter QFD Matrix        | Weight | Byuoancy | Fuel Ccapacity | Thrust | Exhaust emission                              | Operating Life | Warranty     | Cayago Seabob | Seadoo Seascooter |
|--------------------------------|--------|----------|----------------|--------|-----------------------------------------------|----------------|--------------|---------------|-------------------|
| Aesthetically pleasing         | x      |          | x              |        |                                               |                |              | 0             | 0                 |
| Child safe                     | x      | x        |                | х      | X                                             |                |              |               | 0                 |
| Lightweight                    | x      | x        | x              | х      |                                               |                |              |               |                   |
| Floats                         | x      | x        | x              |        |                                               |                |              | 0             | 0                 |
| Propels operator through water |        |          |                | х      | X                                             |                |              | 0             | 0                 |
| Runs for extended period       |        |          | x              |        |                                               |                |              |               |                   |
| Meets current EPA regs.        |        |          |                |        | Х                                             | Х              | x            | 0             | 0                 |
| units                          | lbf.   | lbf.     | gal.           | lbf.   | g/kW-h                                        | Hours/Years    | Hours/Months |               |                   |
| Customer Needs                 | ≤ 18   | ≥ 18     | ≥ 0.5          | ≥ 50   | ≤ 30 of Hydrocarbon, ≤ 490 of Carbon Monoxide | ≥ 350/5        | ≥ 175/30     |               |                   |
| Engineering Requirements       |        |          |                |        |                                               |                |              |               |                   |

**Engineering Requirements** 

Engineering Targets

**Bench Marks** 

Table 2: QFD matrix relates customer needs and engineering requirements.

### House of Quality

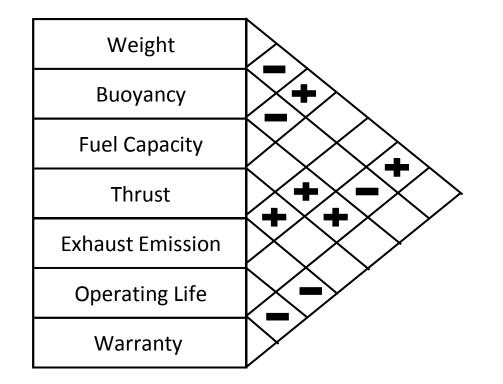



Table 3: House of quality correlates engineering requirements.

#### **Concept Generation**

Boomerang

• 2 Propeller

Octopus

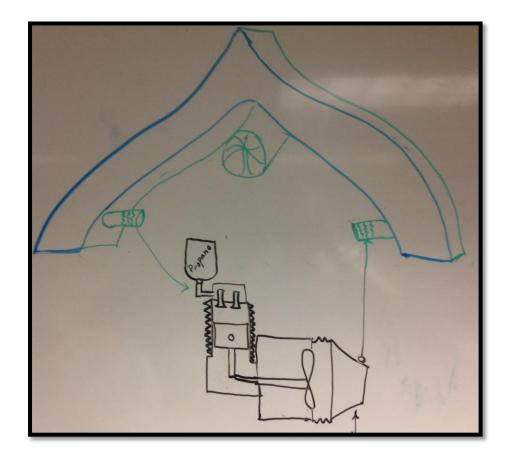
Adjustable Jet

Duck Scooter

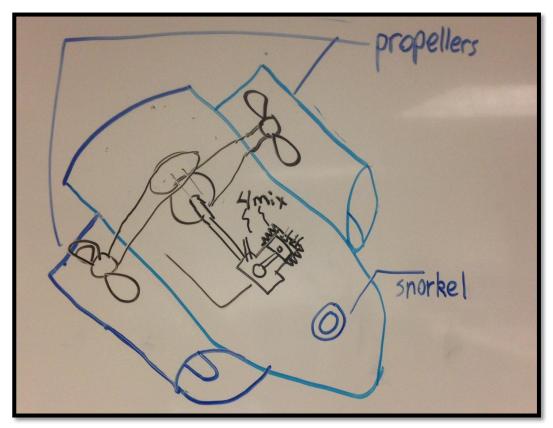
Tank Housing

#### Criteria

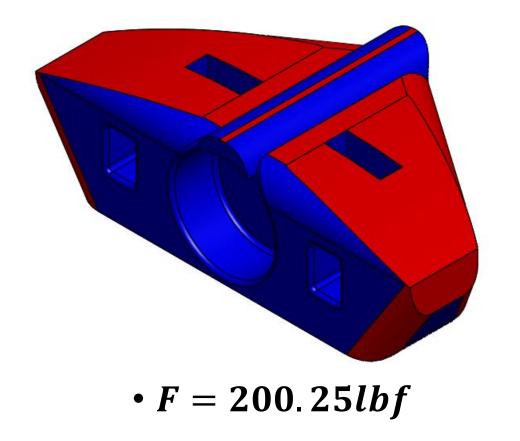
| <ul> <li>Aesthetically Pleasing</li> </ul>       | 10% |
|--------------------------------------------------|-----|
| <ul> <li>Minimal Probability of Error</li> </ul> | 10% |
| <ul> <li>Ease of Manufacture</li> </ul>          | 10% |
| <ul> <li>EPA Regulations</li> </ul>              | 20% |
| <ul> <li>Complexity of Design</li> </ul>         | 10% |
| <ul> <li>Provides Thrust</li> </ul>              | 10% |
| <ul> <li>Hydrodynamically Efficient</li> </ul>   | 10% |
| <ul> <li>Lightweight</li> </ul>                  | 10% |
| <ul> <li>Minimal Cost of Materials</li> </ul>    | 10% |

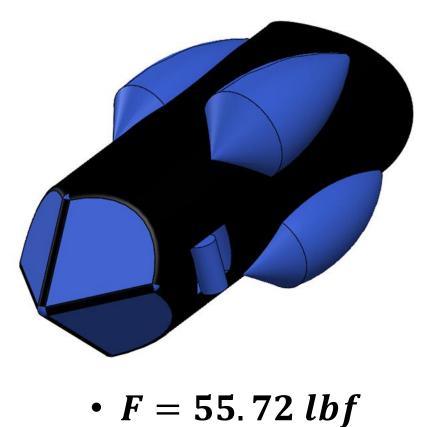

#### **Decision Matrix**

|                       | Requirements and Criteria |                                    |                        |                     |                         |                    |                           |             |                                 |                             |
|-----------------------|---------------------------|------------------------------------|------------------------|---------------------|-------------------------|--------------------|---------------------------|-------------|---------------------------------|-----------------------------|
|                       | Aesthetically<br>Pleasing | Minimal<br>Probability of<br>Error | Ease of<br>Manufacture | EPA<br>Requirements | Complexity of<br>Design | Provides<br>Thrust | Hydrodynamic<br>Efficient | Lightweight | Minimal<br>Cost of<br>Materials | Total<br>Weighted<br>Factor |
| Requirement Weighting | 10%                       | 10%                                | 10%                    | 20%                 | 10%                     | 10%                | 10%                       | 10%         | 10%                             | 100%                        |
| Boomerang             | 7                         | 6                                  | 5                      | 7                   | 5                       | 8                  | 8                         | 6           | 7.5                             | 6.65                        |
| Octopus               | 6                         | 3                                  | 4                      | 7                   | 4                       | 8                  | 6                         | 6           | 5                               | 5.6                         |
| Duck Scooter          | 8                         | 6                                  | 6                      | 6                   | 6                       | 7.5                | 5.5                       | 6           | 5                               | 6.2                         |
| 2 Propeller           | 8                         | 6                                  | 6                      | 7.5                 | 5                       | 8.5                | 7                         | 5.5         | 6                               | 6.7                         |
| Enclosed Housing      | 7.5                       | 8                                  | 6                      | 7                   | 5                       | 9                  | 7                         | 6           | 5                               | 6.75                        |
| Adjustable Jet        | 7                         | 6                                  | 6                      | 8                   | 6                       | 8                  | 8                         | 6           | 6.5                             | 6.95                        |
| Tank Housing          | 7.5                       | 5.5                                | 6                      | 6                   | 5.75                    | 9                  | 7.5                       | 7           | 5.5                             | 6.575                       |


11

# Top Two Ideas

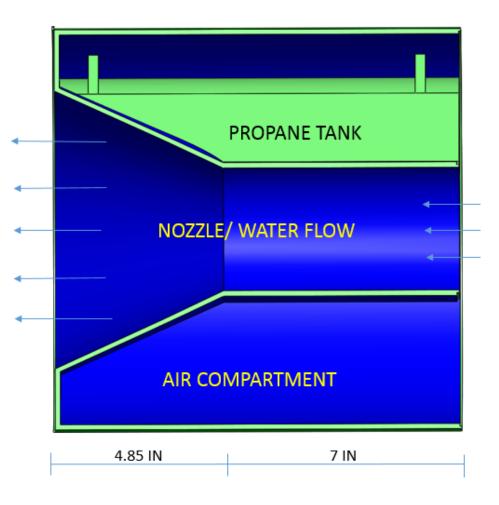

 Boomerang with 4-stroke Propane Engine with Adjustable Jet



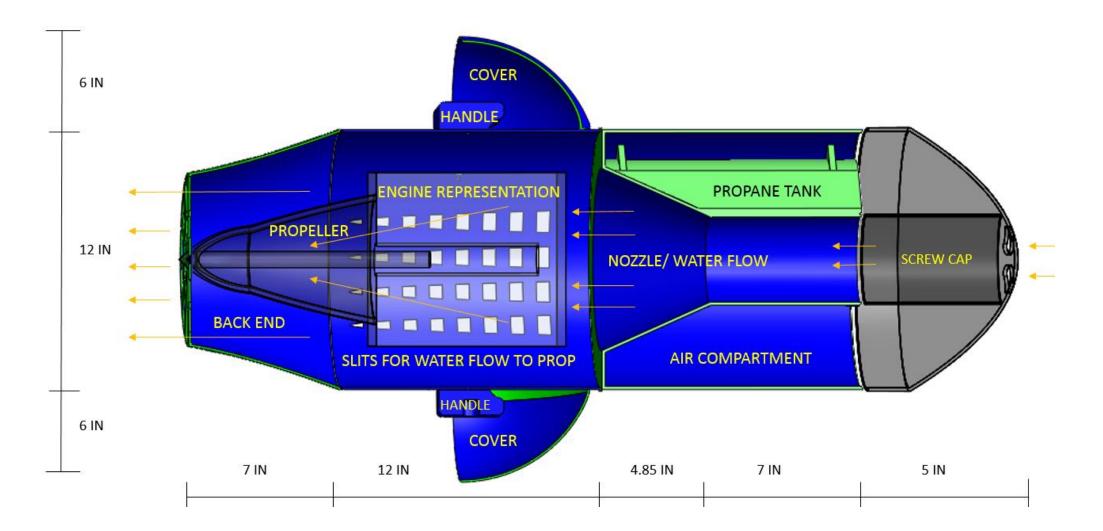

• Two Propeller with 4-stroke 4-mix Engine with Adjustable Jet



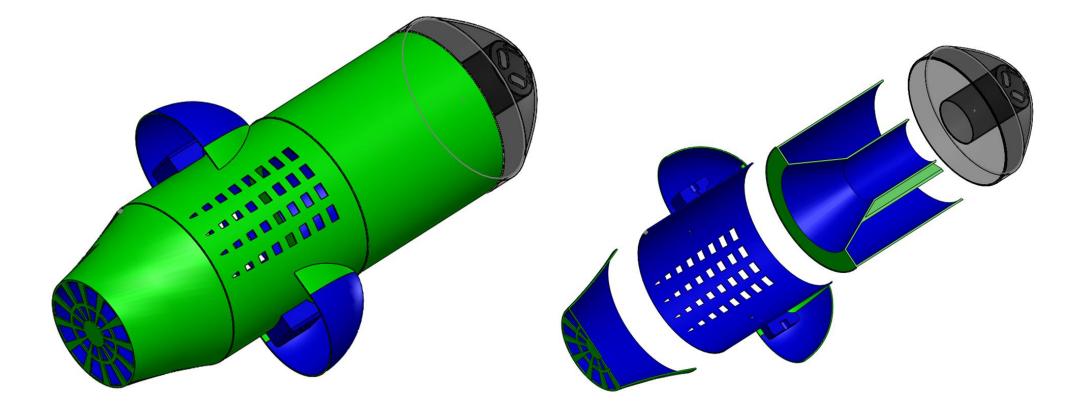
#### Drag Analysis Drag Force: $F = 0.5\rho V^2 C_d A$







#### **Buoyancy Calculations**

• 
$$V_{cyl} = \pi r^2 h = 0.65 f t^3$$


- $V_{nozzle} = 0.13 ft^3$
- $V_{cyl} V_{nozzle} = 0.52 ft^3$
- $V_{required} = 0.54 ft^3$



#### **Triton Internal Side View**



#### Triton Prototype



# **Fuel Analysis**

Gasoline Analysis

Propane Analysis

suburbanpropane.com

### **Gasoline Analysis**

| Dimensions               | Aqua Scooter 2-Stroke Engine (AS 650) | 4-Stroke Engine (Honda GX25) |
|--------------------------|---------------------------------------|------------------------------|
| Length (in)              | 21                                    | 7.6                          |
| Width (in)               | 7.6                                   | 8.7                          |
| Height (in)              | 12.6                                  | 9.1                          |
| Weight (lbf)             | 16.5                                  | 6.4                          |
| Bore (in)                | 1.6                                   | 1.4                          |
| Stroke (in)              | 1.5                                   | 1.4                          |
| Displacement (cc)        | 49                                    | 26                           |
|                          |                                       |                              |
| Power (HP)               | 2                                     | 1.1 @ 7000rpm                |
| Fuel                     | Mixture                               | Unleaded 87 Octane or Higher |
| Fuel Tank Capacity (gal) | 0.5                                   | 0.15                         |
|                          |                                       |                              |
| Price (\$)               | (+/-) 970                             | 240                          |





engines.honda.com

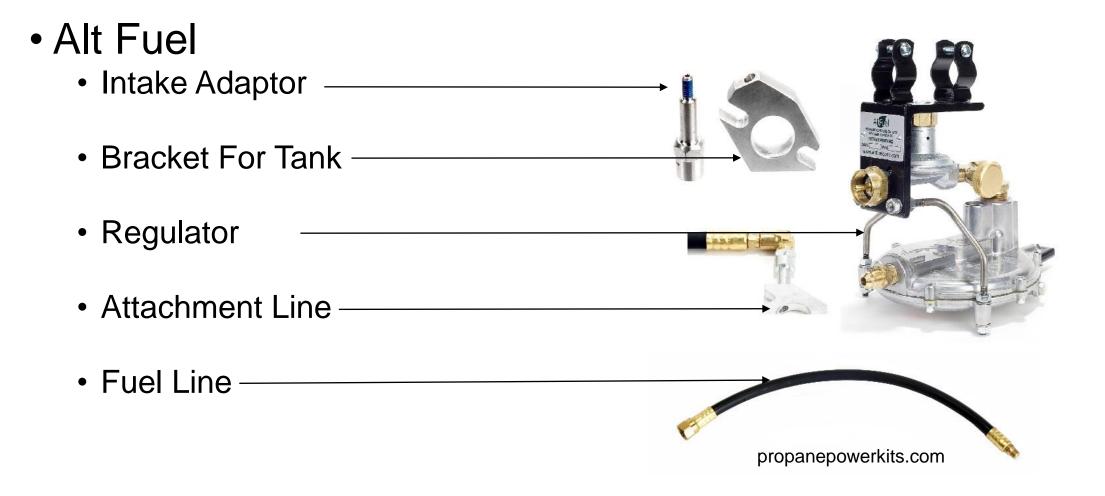
### **Propane Analysis**

- Assumptions
  - Calculated using Honda GX25 converted to propane
  - Running time 3 hours
  - Not Adjusted for Efficiency
- Results
  - Required weight of propane is 12.52 ounces

#### **Chemical and Air Fuel Ratio Calculations**

**Propane Stoichiometry** 

 $C_{3}H_{8}+5O_{2}+18.8N_{2}\rightarrow 3CO_{2}+4H_{2}O+18.8N_{2}$ 


#### AF Ratio for 87 Octane is 15:1

#### **AF** Ratio for Propane

- $M_{air} = 28.97$
- $M_{propane} = 44.09$

• 
$$AF_{propane} = (5 + 18.8) * \frac{28.97}{44.09}$$
  
•  $AF_{propane} = 15.66 \frac{lb \ air}{lb \ propane} : 1$ 

### **Conversion Kits: Propane**



## **Conversion Kit**

- Specific to Honda GX25
- Minor carburetor modification
- Easily swap between gasoline and propane

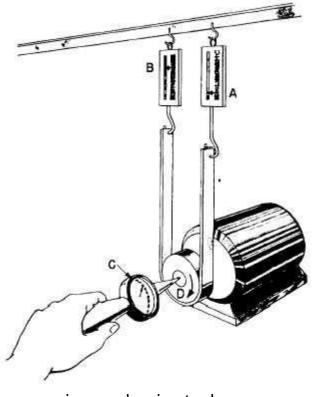


# **Engine Testing**

- Horsepower Testing
- Thrust Testing
- Emissions Testing



### **Engine Modifications**

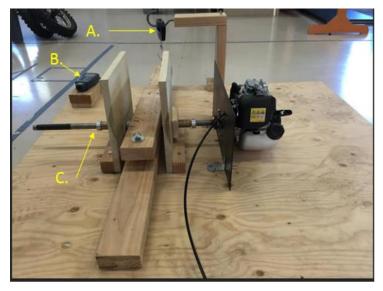

- Exhaust system modified to fit emission testing probe
- Shaft and flange machined in order to test engine on dynamometer
- Multiple iterations attempted to compensate for shaft vibration





#### Prony Brake Experiment

•  $P = \tau * rpm (ft * lb/min)$ 




enginemechanics.tpub.com

# Prony Brake Experiment: Results

#### **Original Test**

- Engine did not start
- Shaft eccentricity significant
- Too much friction



A. Force Scale B. Tachometer

C. Pulley System

#### **Final Test**

- Engine did start with shaft in bushings
- When brake was applied engine stalled
- Vibration moved bolts out of flywheel



## **Thrust Experiment: Modifications**

- Tapered shaft for propeller
- Lubricated bushings
- Wooden box constructed for housing engine
- Force scale

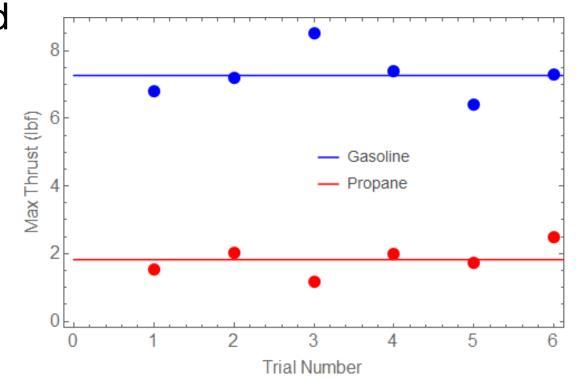




### **Thrust Experiment: Gasoline**

- Wooden housing attached to cart
- 6 Trials conducted of experiment
- Engine started with minimal water
- Water poured into bucket until engine stalled




### **Thrust Experiment: Propane**

- Engine converted to propane
- Correct air-fuel ratio
- Experiment conducted with new fuel source
- Regulator mounted to engine
   housing



#### **Thrust Experiment Results**

- All max thrust data points plotted
- Average thrust line created
- Difference in thrust attributed to:
  - Additional weight
  - Warped fly-wheel

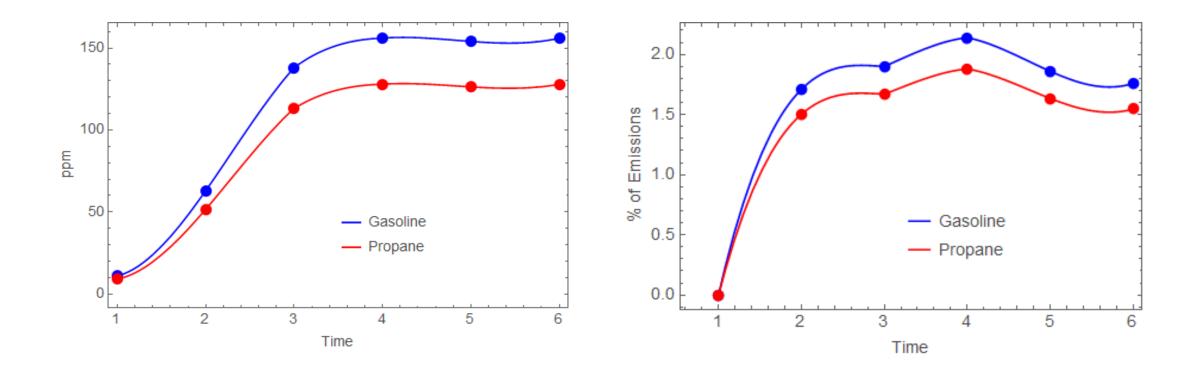


# **Emissions Testing**

- 87 Octane Gasoline Used
- Device: 3 Gas Analyzer
  - Hydrocarbon
  - Carbon Monoxide
  - Carbon Dioxide

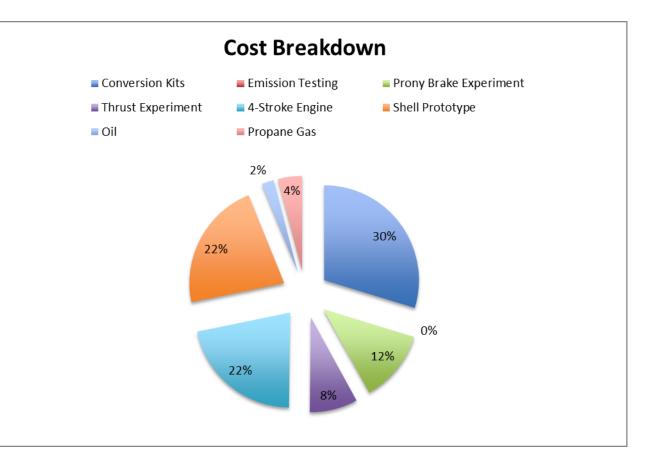


# **Emissions Testing**


- Probe Insert Into Exhaust
- Single Test Conducted
- Several Data Points were Collected
- Goal to compare with
   Propane

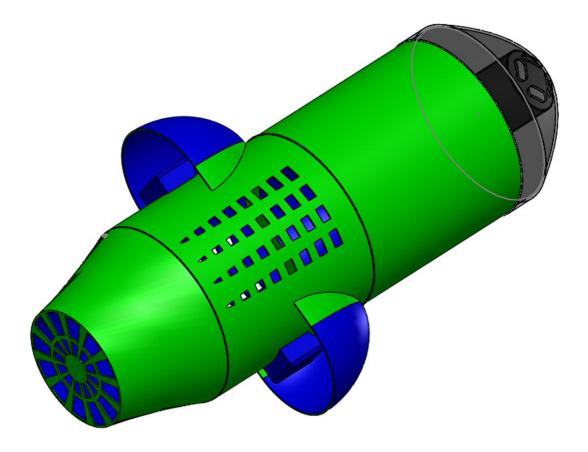


#### **Emissions Testing**


Greenhouse Gases vs. Time[16]

Carbon Dioxide % of Emissions vs. Time[16]




#### Cost of Materials

- Emissions Cost \$0.00
- Support Material \$95.05
- Model Material- \$174.60
- Conversion Kit- \$363.00



## Conclusion

- 3-D Printed Prototype of Shell ½ Scale
- Propane provides comparable thrust
- Emissions for CO<sub>2</sub> are 12% less for Propane
- Emissions for Greenhouse gases are 18% less for propane



#### References

[1] M. Yamamoto. 'Aquascooter- The Manly Way to dive.' www.cnet.com 2007. [Online]

http://www.cnet.com/news/aquascooter-the-manly-way-to-dive/ (Accessed: September, 2014)

[2] B. Douville, P. Ouellette, A. Touchette and B. Ursu, "Performance and emissions of a two-stroke engine fueled using high-pressure direct injection of natural gas," in 1998 SAE International Congress and Exposition, February 23, 1998 - February 26, 1998, .

[3] P. Duret, A. Ecomard and M. Audinet, "A new two-stroke engine with compressed-air assisted fuel injection for high efficiency low emissions applications," in *International Congress and Exposition, February 29, 1988 -March 4,* 1988, .

[4] H. Huang, M. Jeng, N. Chang, Y. Peng, J. H. Wang and W. Chiang, "Improvement of exhaust emissions from a two-stroke engine by direct injection system," in *International Congress and Exposition, March 1, 1993 -March 5,* 1993, .

[5] W. Mitianiec, "Direct injection of fuel mixture in a spark ignition two-stroke engine," in SAE 2002 World Congress, March 4, 2002 - March 7, 2002, .

[6] K. Morikawa, H. Takimoto, T. Kaneko and T. Ogi, "A study of exhaust emission control for direct fuel injection two-stroke engine," in *Small Engine Technology Conference and Exposition, September 28, 1999 - September 30,* 1999, .

[7] P. Rochelle and W. Perrard, "Fuel consumption and emission reduction of a small two-stroke engine through air-assisted fuel injection and delayedcharging," in *International Congress and Exposition, March 1, 1999 -March 4,* 1999,.

[8] Stihl KM 130 R. Firewood Hoarders Club, firewoodhoardersclub.com. [Online]

http://firewoodhoardersclub.com/forums/index.php?threads/stihl-km-130-r-4-mix-engine.3850/ (Accessed: September 2014)

[9] Propane: The Safe, go anywhere, do anything green energy source for all seasons, suburbanpropane.com. [Online]

https://www.suburbanpropane.com/services/propane/ (Accessed: April 2015).

[10] Aquascooter AS-650 Super-Magnum, spearfishing.de. [Online]

http://www.spearfishing.de/product\_info.php?language=en&info=p643\_Aquascooter-AS-650-Super-Magnum.html (Accessed: October 2014)

#### References

[11] Meet the World's Lightest OHC Engine, GX25. engines.honda.com [Online] http://engines.honda.com/models/model-detail/gx25 (Accessed: November 2014) [12] Thermodynamics and Propulsion, Fuel Air Ratio. web.mit.edu. [Online] http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node108.html (Accessed: November 2014) [13] Drag Coefficient, wikipedia.org, March 24, 2015. [Online] http://en.wikipedia.org/wiki/Drag\_coefficient (Accessed: November 2014) [14] Integrated Publishing, Inc. 2014. Basic machines-Intro to machines and motion theories: chapter 8. [Online] http://enginemechanics.tpub.com/14037/css/14037\_51.htm. (Accessed November 2014) [15] Altfuel Conversion Kits, altfuelconv.com. [Online] https://sites.google.com/a/altfuelconv.com/altfuel-llc/where-to-purchase (Accessed :November 2014.) [16] Antes, M., Brindle, R., et. al. 2009. Propane reduces greenhouse gas emissions: a comparative analysis. http://www.propanecouncil.org/. (Accessed: April 2015) [17] Honda Generator Conversions Kits, propanecarbs.com, 2002. [Online] https://www.propanecarbs.com/honda.html (Accessed: November 2014.) [18] Lawn and Garden Equipment for Homeowners, husgvarna.com, October 2014. [Online] http://www.husqvarna.com/us/products/trimmers/128c/ (Accessed: November 2014). [19] "A Brand within the Hitachi Power Tools Group." tanakapowerequipment.com, Jan. 2015. [Online] http://www.tanakapowerequipment.com/main-navigation/products?d=329,341&p=878 (Accessed: November 2014)

# Any Questions?